
Abstract. The splitting between the 2P3
2
and the 2P1

2
terms

in the thallium atom has been calculated at the pertur-
bation theory level and by spin-orbit CI calculations,
using both the Breit-Pauli and the no-pair form of the
microscopic spin-orbit Hamiltonian. The importance of
the spin-other-orbit contribution to the spin-orbit split-
ting is investigated, and it is also shown that an
averaging procedure of the kinematic factors in the
expression for the spin-other-orbit integrals in the
no-pair spin-orbit Hamiltonian yields highly accurate
results. A slightly modi®ed version of a previously
proposed mean-®eld spin-orbit method is shown to have
an accuracy of a few wave numbers. Perturbation theory
is found to give a term-splitting which is too low by more
than 1000 cmÿ1, while spin-orbit CI with the no-pair
form of the spin-orbit operator with the averaged spin-
other-orbit term, and the no-pair mean-®eld operator,
gives results in good agreement with experimental data.
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1 Introduction

One of the ®rst studies of the spin-orbit e�ect in TlH was
done by Pitzer [1] in 1975. Pitzer pointed out that due to
the admixture of p character in the P1

2
spinor the TlAH

bond is weakened considerably compared to the usual r
bond in the LS picture. The TlH problem was further
studied by Pyper [2], Pitzer and Christiansen [3], and
Christiansen et al. [4]. In Ref. [4] a spin-orbit splitting in
Tl of 7400 cmÿ1 was obtained at the ECP level using the
spin-orbit approach suggested by Ermler [5] and a
singles and doubles CI from the 6s and 6p shells.

Several calculations of the 2P1
2
-2P3

2
splitting have been

reported recently in the literature. Using the spin-orbit

RECP method of Ermler et al. [5] Ross et al. obtained an
SCF value of 7324 [6] and in a later study 7424 cmÿ1 [7].
Balasubramanian and Tao [8] obtained 6930 cmÿ1 at the
RECP-CI level, and Li et al. [9] 6457 cmÿ1 in a pertur-
bation calculation using RECPs and MRD-CI wave
functions. KuÈ chle et al. report values of 7383 cmÿ1 at
the HF-RECP level and 7397 cmÿ1 using a two-com-
ponent approach [10]. Desclaux has reported a DF
splitting of 7693 cmÿ1 [11]. The experimental value in
7793 cmÿ1 [12]. In his thesis, Rakowitz [13] investigated
the spin-orbit e�ects in the Tl atom using the full
microscopic no-pair spin-orbit Hamiltonian and four-
component calculations. At the perturbation level he
obtained results in the range of 6100±6500 cmÿ1. At the
four-component SCF level he obtained a value of
7640 cmÿ1, which is in agreement with experimental
results and with results previously reported by Desclaux.
However, with a small four-component CI calculation,
using averaged valence orbitals, Rakowitz obtained a
lowering of the splitting of 800 cmÿ1, which is in
agreement with the previous two-component perturba-
tion theory results. Shortly thereafter Rakowitz and
Marian obtained a splitting which agreed with experi-
mental data from a similar four-component CI using
completely optimized valence orbitals [14]. The reason
for the failure of the perturbation method in the case of
Tl is the di�erent shapes of the two spin-orbit split atom
p orbitals (spinors); Desclaux has reported rmax values
for the atomic spinors P3

2
and P1

2
of 3.2 and 2.8, respec-

tively [15].
The complications arising from the di�erences in ra-

dial extension of the atomic p-type spinors, such as the
failure of perturbation theory methods, make Tl ideally
suited as a test system for spin-orbit CI methods.

Calculations of ®ne-structure splittings can be done
using either the full microscopic spin-orbit Hamiltonian
or simpler operators such as projection-type operators
used in RECP calculations.

The simplest of the full microscopic spin-orbit
Hamiltonians is the Breit-Pauli operator. The Breit-
Pauli operator is obtained from an approximate decou-
pling of the Dirac equation in the presence of external
®elds. The Foldy-Wouthuysen transformation yields
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highly singular operators and the Breit-Pauli operator
su�ers from the same type of variational instabilities as
the spin-free ®rst-order perturbation operators (the
mass-velocity and Darwin terms).

A variationally stable spin-orbit Hamiltonian is ob-
tained from a full blocking of the Dirac equation in the
absence of external ®elds. The results, the no-pair form
of the Breit-Pauli operator (below simply called the no-
pair SO operator), di�ers from the original Breit-Pauli
operator by the occurrence of p-dependent multiplicative
factors. These kinematic factors remove the rÿ3 depen-
dence close to the origin, but make the operator con-
siderably more di�cult to handle.

The no-pair spin-orbit operator contains, just like
the Breit-Pauli Hamiltonian, two types of two-electron
operators: the spin-same-orbit (SSO) operator and the
spin-other-orbit (SOO) operator. While the kinematic
factors enter in a symmetric way in the SSO operator
and therefore are reasonably easy to handle the asym-
metric form of the SOO operator complicates the situ-
ation. It is therefore desirable to simplify the expression
for the SOO operator.

Albeit simpler than the no-pair spin-orbit operator
the Breit-Pauli operator is still quite di�cult to use, e.g.
the number of integrals becomes very large since there
are three distinct operators (of the general type sxlx; syly
and szlz) and there is a loss of symmetry due to the half-
integer spin. Recently, a mean-®eld approach, involving
Fock-like spin-orbit operators and a one-centre ap-
proximation for the two-electron spin-orbit operators
has been suggested. We have used a simpli®ed form of
the mean-®eld operator in Ref. [16] where all orbitals
and integrals used in the calculations are strictly atomic.

In the present study we have calculated the ®ne-
structure splitting between the 2P1

2
and 2P3

2
states of the Tl

atom using a simpli®ed form of the no-pair spin-orbit
Hamiltonian with an averaged SOO operator, the Breit-
Pauli Hamiltonian and the mean-®eld Hamiltonian with
full account of the SOO integrals. The calculations were
done both at the perturbation theory and spin-orbit CI
levels.

The results show that while the Breit-Pauli operators
give too large splittings both the no-pair spin orbit
operator with only SSO terms and with an approximate
treatment of the SOO integrals give results in good
agreement with experimental values at the spin-orbit CI
level. Our perturbation theory results are in agreement
with previously published results, i.e. too low by more
than 1000 cmÿ1. Furthermore, we show that the mean-
®eld approximation, in its completely atomic form, give
results in excellent agreement with the full microscopic
spin-orbit Hamiltonian.

2 Theory

This section is divided into three parts: the term energies,
the full microscopic spin-orbit Hamiltonian and the
mean-®eld spin-orbit operator.

2.1 The term energies

The two basic methods to calculate the term energies are
perturbation theory [17±20] or by solving the spin-orbit
CI problem [21±24].

The starting point for perturbation calculations is a
limited set of LS-coupled wave functions generated at
the spin-free level. A spin-orbit Hamiltonian matrix
is calculated in this basis, and the term energies are
obtained by diagonalization. The quality of the results
clearly depends on the quality of the basis used. An LS-
coupled basis is normally generated from large spin-free
relativistic CI calculations.

Perturbation methods work well if the molecular or-
bitals (or molecular spinors) are not changed appreciably
by the spin-orbit interaction. This is normally the case for
lighter elements and also for transition metals where the
spin-orbit splitting originates from the d-shells. In cases
where the molecular orbitals change signi®cantly other
methods must be used.

One possibility is certainly to solve the Fock-Dirac
equation, at the SCF, or to include the spin-orbit oper-
ator already in a two-component SCF procedure (a
subsequent CI should of course be done in both cases).
One can also solve the spin-orbit CI problem in a rela-
tivistic spin-free many-electron basis.

In spin-orbit CI calculations the orbital basis will
often not be optimal for the state under study: the dif-
ferent multiplets may be described by orbitals (spinors)
with signi®cantly di�erent radial extents, or low-lying
states which do not interact with the ground state in the
LS scheme may become important in the reference state
due to strong spin-orbit interactions. This problem can
certainly be overcome by making a triples or quadruples
CI, but this would be an expensive procedure. A simpler
route is to use the multireference CI procedure and to
make a careful selection of the orbitals used for the CI
expansion.

In the present study term energies have been calcu-
lated using both perturbation theory in a space spanned
by the sp or the spd manifold of LS-coupled states, and
by a multireference spin-orbit CI procedure [25].

2.2 The microscopic spin-orbit Hamiltonian

Several strategies have been pursued for evaluating spin-
orbit matrix elements. In the simplest approaches a
model spin-orbit Hamiltonian is extracted from the
di�erence potential for l� 1=2 and lÿ 1=2 orbitals
obtained from atomic Dirac-Fock [5, 26] or Wood-
Boring calculations [27]. Another possibility is to employ
an e�ective one-electron, one-centre spin-orbit operator

Heff
SO �

1

2c2
X

i

X
a

Zeff
a

r3aia

~laia~sia : �1�

In this operator the e�ective nuclear charge Zeff
a is

parametrized to ®t experimental ®ne-structure splittings
of one or several speci®c states on atom a.

The most rigorous approach is to use a full micro-
scopic spin-orbit Hamiltonian, which is obtained from a
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transformation of the many-electron Dirac-Breit
equation to a two-component form. However, such a
transformation cannot be done exactly except for the
non-interacting electron case (or more precisely in the
absence of a scalar potential), and approximative
transformation methods must be used.

Two di�erent microscopic spin-orbit Hamiltonians
have been considered in the present study, the Breit-
Pauli operator [28] and the no-pair spin-orbit operator
obtained by the free-particle Foldy-Wouthuysen trans-
formation [29, 30, 24].

The Breit-Pauli spin-orbit Hamiltonian has the
following form:

HSOBP � e22
2m2c2

(X
i

X
a
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X
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and the no-pair Hamiltonian can be written as:
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where Qi

ij � AiAj

Ei�m ; Qj
ij � AiAj

Ej�m ; Ai �
��������
Ei�m
2Ei

q
and

Ei �
����������������
p2i � m2

p
[24].

The Breit-Pauli Hamiltonian and the no-pair Ham-
iltonian di�er by the presence of kinematic factors
bracketing the microscopic one- and two-electron oper-
ators in the no-pair operator; the role of the kinematic
factors is to dampen the interactions at small r. Neither
Eq. (2) nor Eq. (3) is symmetric in the electron indices
i and j.

The e�ect of the two-electron term is to screen the
nucleus, and the one- and two-electron contributions to
the spin-orbit splitting are of opposite sign. Since the
e�ect of the kinematic factors is to dampen the inter-
actions at small r, the no-pair spin-orbit Hamiltonian
will in general give a smaller spin-orbit splitting than the
Breit-Pauli Hamiltonian.

The ®rst term in the two-electron part of the SO-
Hamiltonian describes the SSO interaction and the sec-
ond term the SOO interaction [30]. The SSO term arises
in the transformation of the Dirac-Coulomb operator
[31], while the SOO interaction stems from the Breit term
in the Dirac-Coulomb-Breit operator [31].

Unfortunately, the kinematic factors appearing in the
two-electron part of Eq. (3) do not enter symmetrically
in the SSO and SOO operators. The e�ect of this
asymmetry makes it di�cult to calculate the SSO and
SOO integrals at the same time (unless the primitive
integrals are stored on disk in an intermediate step). If,
on the other hand, the kinematic factors in the two-
electron part of HSO

NP (Eq. 3) can be modi®ed such that
the term can be rewritten as

X
i6�j

Qx
ij
~rij

r3ij
�~pi

 !
� �~si � 2~sj�Qy

ij ; �4�

only one set of integrals need to be calculated. It can be
further shown that in a local approximation the e�ect of
the kinematic factors can be accounted for simply by
modifying the contraction coe�cients in the molecular
basis set [32].

The two-electron terms contribute about 10±20% to
the spin-orbit splitting for the third-row transition ele-
ments (but more for the lighter elements due to the 1

r3
dependence). Taking into account that the SSO term
arises from the Dirac-Coulomb operator and the SOO
term from the Breit correction we would expect the SOO
term to contribute little to the spin-orbit splitting. In
order to simplify the calculations one might consider
averaging the kinematic factors in the two-electron op-
erator or simply to drop the SSO term. Since both the
SSO and SOO terms describe a screening of the nucleus,
one would expect slightly too large spin-orbit splittings if
the latter term is omitted.

In the present calculations we have used both the
no-pair form of the spin-orbit operator with averaged
kinematic factors in the two-electron operator and have
dropped the SOO term altogether. The averaging was
done by putting all the kinematic factors in the two-
electron term equal to 1

2 �Qi
ij � Qj

ij�. Other schemes, such
as replacing the rightmost Qj

ij in Eq. (3) with Qi
ij, are also

conceivable.

2.3 The mean-®eld spin-orbit operator

The two-electron spin-orbit integrals contribute to the
spin-orbit matrix element between Slater determinants
which are singly or doubly excited relative to one another.
The matrix element between singly excited determinants
can, just like in the Hartree-Fock equations, be written as
a pseudo one-electron integral. One of the key aspects of a
mean-®eld theory is to neglect interactions between
doubly excited states and to include all two-electron
integrals in pseudo one-electron integrals.

A mean-®eld theory for spin-orbit interactions has
recently been published [16], and we will only give a brief
outline of the method here.

The matrix element of the spin-orbit operator be-
tween a pair of Slater determinants di�ering by a single
valence spin orbital excitation i! j is given by

HSO
ij � hijHSO�1�jji � 1

2

X
k

nk

(
hikjHSO�1; 2�jjki

ÿ hikjHSO�1; 2�jkji ÿ hkijHSO�1; 2�jjk
)

; �5�

where nk denotes the occupancy of orbitals common to
the determinants on the left- and right-hand sides. k runs
over all occupied spin orbitals common to the two
determinants.

The pseudo one-electron operator which gives rise to
these matrix elements has the form
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In [16] the orbitals jk > were taken from spin-free
molecular calculations.

Based on the short-range character of the spin-orbit
operator (which is rÿ3ij at long distances), it was assumed
in [16] that all two-electron integrals between basis
functions centred on di�erent centres could be neglected.
This assumption is necessary in order to make the mean-
®eld method e�cient.

An atomic program which calculates all one- and
two-electron integrals, including the two-electron SOO
integrals, and forms the proper mean-®eld integrals has
recently been written by one of us [33]. In molecular
applications this amounts to the somewhat stronger as-
sumption compared to [16] that all two-centre integrals
can be neglected, and that the orbitals jk > can be taken
from atomic calculations. This approximation has been
used with success in applications on PtH�2 and on NbO.
These calculations will be presented in future publica-
tions.

In the present work we have carried out mean-®eld
spin-orbit calculations on the thallium atom both at the
perturbation theory level and using a spin-orbit CI
program [25].

3 Details of the calculation

The spin-orbit calculations were done both as perturba-
tion calculations and as spin-orbit CI calculations. The
variational space used in the perturbation calculations
consisted of all states generated, by distributing three
electrons in the 6s and 6p shells. The basis vectors were
generated by spin-free relativistic multireference SDCI
calculations.

We used the Douglas-Kroll no-pair operators [34, 35]
to account for relativistic e�ects at the spin-free level.
Molecular spin-free calculated using the Hermit integral
code [36], modi®ed to include relativistic one-electron
no-pair integrals, and the MCSCF program Sirius [37]
was used for the orbital optimization. The program used

both for the perturbation and spin-orbit CI calculations
was based on a RASCI [38] formalism, extended to en-
able the inclusion of one- and two-electron spin-orbit
terms [25]. The spin-orbit integrals over the full molec-
ular basis set were generated by a modi®ed version of the
Hermit integral program [36].

A newly developed atomic program was used for the
mean-®eld spin-orbit integral calculations [33].

All calculations were for practical reasons carried out
in the D2h point group. With our choice of coordinate
axis the px orbital transformed as B3u; py as B2u and Px as
B1u. The one-electron basis used in both the perturbation
and spin-orbit CI calculations was generated as follows.
SCF calculations were carried out on the three (degen-
erate) states 2Px;

2Py and
2Pz. The orbitals used in the CIs

(occupied and virtual) of Ag; B1g; B1u and Au symmetry
were taken from the 2Pz state, those of B2g and B2u
symmetry from the 2Py state and ®nally those of B1g and
B1u symmetry from the 2Px state. This is the same choice
as in Ref. [13].

In the RASCI formalism, reference states are gener-
ated by distributing electrons in three subspaces usually
labelled RAS1, RAS2 and RAS3. The reference state is
generated by all con®gurations arising from a complete
redistribution of the electrons assigned to the RAS1 and
RAS2 subspaces, specifying a minimum number of
electrons in RAS1. The multireference CI is generated by
excitations out of RAS1 and RAS2 (normally all single
and double excitations) into virtual space (RAS3).

At the spin-free level our smallest CI calculation,
henceforth labelled INT, was a full three-electron CI in
the 6s and 6p orbitals, i.e. a RAS1 space with three
electrons in the 6s and 6p orbitals, no RAS2 space and
no excitations into RAS3. At the second level we used
INT as the reference space for a full singles and doubles
CI (CI3). At the third level all single excitations from the
5d shell into the virtual space were added to CI3
(CI3CV), i.e. a RAS1 space with 9±10 electrons in the 5d
orbitals, a RAS2 space with 1±2 electrons in the 6s and
6p orbitals and ®nally a RAS3 space with 0±2 electrons.
At the fourth level, CI13(A), the RAS1 space consisted
of the 5d and 6s shells, with an occupation ranging from
10 to 12 electrons, a RAS2 space consisting of the 6p
orbital with 1±3 electrons and 0±2 electrons in RAS3.
Finally, at the highest level, CI13(B), the 5d orbitals
were used for RAS1 and the 6s and 6p orbitals for
RAS2. The occupations were 8±10 electrons in RAS1,
3±5 electrons in RAS2 and 0±2 electrons in RAS3. The
di�erent cases are summarized in Table 1. Our pertur-
bation calculations were carried out in the basis de®ned
by these spin-free CI calculations.

Some special considerations are necessary for the
spin-orbit CI. Since the 6p orbitals are equivalent at the

Table 1. Notations for various
CI spaces Name RAS1 RAS2 MINR1 MAXR3 Comment

INT 0 6s;6p 0 0 Internal CI 3 electrons correlated
CI3 0 6s;6p 0 2 SDCI for 3 electrons
CI3CV 5d 6s;6p 9 2 Relax d-shell by single excitations
CI13(A) 5d;6s 6p 10 2 13 electrons SDCI, 6s in RAS1
CI13(B) 5d 6s;6p 8 2 13 electrons SDCI, 6s in RAS2
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spin-free level but not at the spin-orbit level it is crucial
that the spin-orbit CI is able to describe the relaxation of
the two 6p spinors. In order to assure this property of the
spin-orbit CI we have adopted the same approach as in
Ref. [14], i.e. to gradually increase the RAS2 space by
moving p-orbitals from RAS3 to RAS2. The calculations
are labelled (r), (1p), (2p) and (3p) (f ) for no p-shell, one
p-shell, two p-shells, three p-shells and all p-shells moved
to RAS2.

Spin-orbit calculations, both at the perturbation and
the CI levels, were done using the no-pair form of the
spin-orbit operator and either averaging kinematic fac-
tors to estimate the SOO term (see the method section),
or by neglecting it altogether. The importance of the
SOO term (and consequently the reliability of the aver-
aged kinematic factor approach) was investigated using
the Breit-Pauli operator at the perturbation level with
and without the SOO term.

Mean-®eld spin-orbit perturbation and spin-orbit CI
calculations, including the SOO term, were carried out at
the CI13B level (see above).

The primitive basis set used for the thallium atom was
the 20s, 16p, 11d and 8f atomic basis set of Faegri [39].
Two di�erent contractions, both of the Ra�enetti type
[40], were used. The smaller one consisted of 7s, 6p, 5d
and 2f contracted functions, corresponding to a full
contraction of all the core orbitals, doubly split 6s and
6p orbitals, a triply split 5d orbital and one correlating
f -function (basis set A), while the larger basis set con-
sisted of 8s, 7p, 5d and 2f contracted functions (basis set
B). The larger basis set was obtained from the smaller
one by decontracting the outermost functions in the
valence orbitals.

4 Results and discussion

4.1 Perturbation theory results

Perturbation theory results are shown in Tables 2 and 3.
Table 2 contains results obtained with the Breit-Pauli
operator and with the no-pair spin-orbit operator with
and without the SOO term (but using the averaged
kinematic factor approximation in the former case).
These calculations were done at the CI3 level using the
[7s;6p;5d;2f ] contracted basis set (basis set A). Table 3
shows results obtained with the no-pair and mean-®eld
spin-orbit operators using the larger [8s;7p;5d;2f ] con-
tracted basis set (basis set B) and a 13-electron CI
(CI13B) together with results from [14].

The spin-orbit splitting obtained with the Breit-Pauli
operator is larger than the no-pair splitting by more than
3000 cmÿ1 in all cases. At the same time the Breit-Pauli
SSO contribution (316 cmÿ1) is larger than the no-pair
SSO contribution (237 cmÿ1). The e�ect of the SOO
interaction is 70 cmÿ1 for the Breit-Pauli Hamiltonian
and 47 cmÿ1 for the no-pair operator (with averaged
kinematic factors) in the CI3 calculations. Assuming the
e�ect of the SOO term to scale like the SSO term, we get
an estimate of the no-pair SOO term from the BP SOO
result as (70*237/316) = 53 cmÿ1, a result which sup-
ports the averaged kinematic factor approximation. The

validity of the approximation is further substantiated
when we compare it with the mean-®eld result. The ®ne-
structure splitting obtained at the CI13 level (i.e. when d-
correlation is included in the calculation) is 6654 cmÿ1
with our no-pair spin-orbit Hamilton and 6651 cmÿ1
with the mean-®eld operator (Table 3). Di�erences of a
few cmÿ1 are reported in [16] between splittings obtained
using no-pair and mean-®eld spin-orbit Hamiltonians
for some Pt and Pd compounds. The total e�ect of the
SOO term in the mean-®eld approximation is 50 cmÿ1,
which is in excellent agreement with our no-pair result.

Compared with the results presented by Rakowitz
and Marian, we obtain a larger splitting both at the CI3
and the CI13 levels by more than 100 cmÿ1 and
250 cmÿ1, respectively. We have used the same basis set
and essentially the same orbital set as Rakowitz and
Marian, the only di�erence being that they averaged
their orbital basis over the cartesian components prior to
the spin-orbit calculations, but this should be of minor
importance. There are some di�erences in the active
spaces used, however. Our active space is slightly larger
than that used by Rakowitz and Marian at the CI3 level
(our reference space, but not that used by Rakowitz and
Marian, contains s1p2 con®gurations). This di�erence
becomes even more pronounced in the CI13 calculations
where we have, in contrast to Rakowitz, con®gurations
with open d-shells in the reference. At least a part of the
di�erence must be due to the di�erent MRCIs used by us
and by Rakowitz and Marian.

4.2 Spin-orbit CI results

Our spin-orbit CI results are presented in Tables 4
and 5.

An internal CI in the space spanned by only the 6s
and the 6p orbitals gives the rather reasonable splitting

Table 2. Analysis of various contributions to the splitting.
Perturbation theory results, energies in cm)1

Operator Basis set CI type DE�cmÿ1�

Hone
NP A CI3 6621

Hsso
NP A CI3 6384

Hsoo
NP A CI3 6337

Hsoo
NP B CI3 6305

Hone
BP A CI3 10124

Hsso
BP A CI3 9808

Hsoo
BP A CI3 9738

Table 3. Perturbation theory results, energies in cm)1

Operator Basis set CI type DE�cmÿ1�

Hsso
mf B CI13(B) 6701

Hsoo
mf B CI13(B) 6654

Hsoo
NP B CI13(B) 6651

MRa CI3 6221±6224

MRa CI13 6255±6397

aResults from Refs. [13, 14]
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of 7321 cmÿ1. Increasing the RAS2 space by one p-shell
lowers the splitting by 645 cmÿ1 to 6676 cmÿ1, making
the agreement with experimental data much worse.
When we expand the RAS2 space with more p-functions
the result is gradually improved, reaching the reasonable
value of 7604 cmÿ1 when all p-orbitals are included in
the RAS2 space (it should be recalled that a full CI is
performed in the RAS2 space).

At the CI3 level there is virtually no e�ect from in-
creasing the RAS2 space, and the calculated splitting is
the same as that obtained in the INT calculations with the
largest reference space. These results can be interpreted
as showing that the relaxation of the p-orbitals (spinors)
is adequately described as soon as single excitations from
a reasonable reference state are included in the CI.

Next, we consider the CI3CV results, where the CI3
has been expanded to include single excitations from the
d-shell. The main di�erence between the CI3 and CI3CV
calculations is that the latter also describe d-shell
polarization e�ects. The e�ect of the d-shell polarization
is 200±300 cmÿ1 and, not surprisingly, the trend ob-
tained when more p-shells are included in RAS2 is the
same as for CI3.

In the ®nal step, CI13(B), double excitations from the
d-shell are included in the CI expansion. The e�ect is a

lowering of the splitting by 130 cmÿ1 relative to the
corresponding CI3CV result to 7720 cmÿ1, which is
close to the experimental value of 7796 cmÿ1.

Separate calculations are represented by CI13(A),
where double excitations from the d-shell have been in-
cluded in the CI, but where the 6s shell has been moved
from RAS2 to RAS1. The CI13(A) results are similar to
the CI3CV results, although the e�ect of increasing the
RAS2 space is somewhat larger for CI13(A) than for
CI3CV. However, it is a bit surprising that on compar-
ing the results of CI13(B) and CI13(A), the e�ect of
moving the 6s shell from RAS2 to RAS1 is as large as
100 cmÿ1.

Rakowitz and Marian obtain results which are about
100 cmÿ1 lower than our SSO results at the CI3 level.
Considering that the e�ect of the SOO term, which is not
included in the results in Table 4, is 50±100 cmÿ1, our
CI3 results are in good agreement with the results of
Rakowitz and Marian.

Finally, Table 5 shows results obtained with the full
spin-orbit Hamiltonian. Compared with the results in
Table 4 we see a constant SOO contribution of about
70±80 cmÿ1, consistent with our perturbation calcula-
tion results. The agreement between the mean-®eld result
(7660 cmÿ1) and the no-pair result (7656 cmÿ1) is ex-
cellent. At this point we are 137 cmÿ1 below the exper-
imental result of 7793 cmÿ1.

Rakowitz and Marian obtain a smaller splitting than
ours for the smallest reference space, by 429 cmÿ1
(Table 5), but comparable results when they use a larger
reference space (7672 vs 7656 cmÿ1). The e�ect of
enlarging the reference space is large in Rakowitz and
Marian and calculations (445 cmÿ1) while our corre-
sponding e�ect (at the CI13(A) level) is 113 cmÿ1. How-
ever, their reference spaces are in all cases smaller than
ours (they include neither s1p2 con®gurations or open d-
shell con®gurations). We conclude that the main reason
for the di�erences between our results and the results of
Rakowitz and Marian is that their smallest reference
spaces are inadequate for spin-orbit calculations.

Rakowitz and Marian also report results obtained
from a 19-electron CI where the 5p shell has also been
correlated. Their CI19 result is indeed in excellent
agreement with experimental data, and it shows that
core correlation is reasonably important in thallium.

5 Conclusions

The results from the present study can be summarized as
follows:

1. The mean-®eld method is an excellent approxi-
mation to the full microscopic no-pair spin-orbit Ham-
iltonian for Tl.

2. The SOO term, which is di�cult to calculate cor-
rectly, contributes 50±100 cmÿ1 to the splitting between
the Tl 2P3

2
and the 2P1

2
states.

3. The error induced by the averaged kinematic factor
approximation is very small. The computational gain
from this approximation is large [32].

4. Spin-orbit CI calculations using the no-pair form
of the microscopic spin-orbit Hamiltonian, neglecting

Table 4. Spin-orbit CI results, basis set B. No spin-other-orbit
(SOO) term. Energies in cm)1. The calculations are labelled (r),
(1p), (2p) and (3p) (f ) for no p-shell, one p-shell, two p-shells, three
p-shells and all p-shells moved to RAS2

Operator RAS2
type

INT CI3 CI3CV CI13(A) CI13(B)

Hsso
NP (r) 7321 7603 7852 7820 7720

Hsso
NP (1p) 6676 7603 7819 7831

Hsso
NP (2p) 7108 7604 7824 7909

Hsso
NP (3p) 7470 7604 7825 7926

Hsso
NP (f ) 7604 7604 7826 7933

MRa (r)b 7506 7227

MRa (f )b 7519 7672

aRef. [14], including the spin-other-orbit term
bThe references used by Rakowitz and Marian are not strictly
comparable to ours

Table 5. Spin-orbit CI results, basis set B. SOO term included.
Energies in cm)1. The calculations are labelled (r), (1p), (2p) and
(3p) (f ) for no p-shell, one p-shell, two p-shells, three p-shells and all
p-shells moved to RAS2

Operator RAS2 type INT CI3CV CI13(B) CI19

Hsoo
NP (r) 7369 7784 7656

Hsoo
NP (1p) 6625 7751

Hsoo
NP (f ) 7537 7757

Hsoo
mf (r) 7660

MRa (r)b 7227

MRa (f )b 7672 7796

aRef. [14], including the SOO term
bThe references used by Rakowitz and Marian are not strictly
comparable to ours
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contributions from the SOO term, gives splittings in
satisfactory agreement with experimental values.

5. It is important to choose the reference states with
great care in spin-orbit calculations.

6. The Breit-Pauli form of the microscopic spin-orbit
Hamiltonian gives results which are too large by
2000 cmÿ1, in agreement with results previously report-
ed by Rakowitz and Marian [14].

7. We ®nd that perturbation theory gives splittings
which are 1000±1500 cmÿ1 too low compared to exper-
imental values in agreement with results previously
reported by Rakowitz and Marian [14]. This failure of
perturbation theory is due to the di�erence in spatial
extent of the P3

2
and the P1

2
atomic spinors in Tl.
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